Full text: Močniks geometrische Formenlehre für Mädchen-Bürgerschulen

dann über und unter einem dieser Parallelogramme die Grundflächen. (Von 
den Netzen schiefer Körper wollen wir wegen der Schwierigkeit in der 
Herstellung absehen.) 
Soll die Größe der Mantelfläche eines Prismas bestimmt werden, 
so muss man zuerst die Seitenflächen als Parallelogramme berechnen; ihre 
Summe gibt die Mantelfläche. 
In einem geraden Prisma bildet die Mantelfläche, wenn man sich 
dieselbe auf eine Ebene abgewickelt denkt, ein Rechteck, dessen Grundlinie dem 
Umfange der Grundfläche, und dessen Höhe der Seitenkante des Prismas gleich 
ist (Fig. 164). Also gilt der Satz: Die Mantelfläche eines geraden 
Prismas wird gefunden, indem man den Umfang der 
Grundfläche mit einer Seitenkaute multipliciert. 
Addiert man hierzu noch die doppelte Grundfläche, so erhält man die 
Oberfläche des Prismas. 
Um den Cubikinhalt eines Prismas zu finden, wollen wir 
vom rechtwinkeligen Parallelepiped ausgehen. Es sei der Cubikinhalt eines 
rechtwinkeligen Parallelepipeds (Fig. 165), in welchem die Länge 4L — 4 ck-n. 
die Breite U6 — 2 ckm und die 
Höhe 41) — 3 c/»r ist, zu bestimmen. 
Da die Grundfläche 2x4 — 
8 enthält, so lässt sich auf ihr¬ 
em 8mal auflegen; das Paralle¬ 
lepiped enthält also bis zu einer Höhe 
von 1 ckm eine Schichte von 8 
zu der Höhe LU gehört eine neue 
Schichte von 8 und zu der Höhe 
UV wieder eine Schichte von 8 
Das ganze Parallelepiped hat daher 
3mal 8 ckmb oder: 2x4x3 
Fig. 165. 
— 24 ckm». — Allgemein lassen sich auf der Grundfläche jedesmal so viele 
Cubikeinheiten aufstellen, als dieselbe Quadrateinheiten enthält, und es erscheinen 
so viele solcher Schichten von Würfeln übereinander, als die Höhe Längen¬ 
einheiten enthält. Man muss daher, um den Cubikinhalt eines rechtwinkeligen 
Parallelepipeds zu erhalten, die Grundfläche mit der Höhe, oder, was dasselbe 
ist, die Länge, Breite und Höhe miteinander multiplicieren. Daraus folgt: , 
Der Cubikinhalt eines rechtwinkeligen Parallelepipeds
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.